1、警惕谐波
有时候数据中心机房在网络运行高峰期会出现网络运行不稳定的现象,表现为服务器与终端之间的数据传输频频错误,数据更新速度偶尔变慢,有时出现断续。于此类似,路由交换设备有时也会突发性地“震荡”,数据传输暂时的空白,似乎网络已经中断。经过排查,幕后的真凶就是谐波,就其根源是该企业机房的供电系统布局不够合理所致。
首先要对电源谐波功率含量和网络错误率要定期测试,当发现错误帧时一定不要掉以轻心。另外,一路电源能带动的工作站建议不要超过30台,否则应象划分网段那样重新划定供电区域。以免内谐波功率累积过大,超过设备的容许范围。如果网络可靠性要求很高,或者对某些非常关键的网络,那么建议你将主要的网络设备如服务器、路由器等,在网络规划设计时就选择由单独的UPS供电,以消除其它电源的谐波对其带来的影响。
2、空气对链路的浸蚀
网络链路暴漏在空气中,如果机房的温度、湿度、风速等不符合要求会对链路造成浸蚀。比如光纤链路就经常被大家所忽视,由于长时间暴漏在空气中,非常受到空气中的水蒸气、灰尘等浸蚀和污染。通常情况下,这类网络故障比较难以判断和定位,并且受环境因素的影响比较大。
要预防此类故障的发生,首先要改善机房的布线,做好链路与空气的隔绝,特别要注意链路的接头处,这是最容易造成浸蚀的地方。其次要改善机房环境,其实网络设备对环境的要求是比较苛刻的。条件允许的话,对机房的温度、湿度、风速等参数进行监控,然后根据情况进行调节。最后定期的检修也必不可少,至少一年要进行两次这样的检测,更换被浸蚀损坏的链路。
3、记录不可少
某些机房管理人员技术非常不错但缺乏良好的习惯,在机房管理、维护过程中随意性太大。不仅对于机房中设备的数量、运行情况、网络布局等不够了解,而且在进行网络配置后没有做记录的习惯。这些管理过程中的空白,在一旦发生网络故障进行排错过程中其弊端暴露无遗。通常的情况是,管理员心急火燎但就是不能定位故障,工作效率非常低下。
笔者认为机房的管理者,首先是设备记录,对机房中的设备进行分类记录,这些记录应该力求详尽。最好以表格的形式进行分类归档记录,可以包括如下内容:安装时间、维修记录、运行状态、保质期等。其次是配置记录,将设备的相应配置信息记录在案。比如连接端口、帐户、密码等。最好将整个机房的网络拓扑图画出来,然后根据布局的调整进行变动。还有一些记录也很必要,就是机房网络故障的维修记录。这些记录应该做到详尽,包括故障时间、症状、排除方法和错误原因等。在实际工作中,这些记录往往被某些管理人员所忽略,其实这些记录在案的非常有助于此后的网络排错。
4、照明系统不可忽视
照明系统是计算机机房建设中不可缺少的部分。计算机机房的照明系统既不同于一般工厂的照明,也不同于一般办公室、会议室和家庭的照明。计算机机房的照明,除一般照明应具有的性能外,还有自己特殊的要求。特别是有些计算机机房采用全封闭式结构,机房内只能采用人工光源而无自然光源。在这种情况下,机房照明系统的好环,就显得格外重要了。机房照明质量好环,不仅影响计算机操作人员和维修人员的工作效率和身心健康,而且还会影响计算机的可靠运转。
笔者认为,一个标准的机房至少应该配备两套照明系统。首先是一般照明,来源于外界天体的自然光源和一种是人工照明即各种照明设备。对于一般照明应该达到的要求是:光线柔和,适合人体的生理需要,不能因光源产生干扰而影响计算机的干扰。另外,一定要预备事故照明。在某些特殊情况下当正常照明因故障熄灭后,事故照明能够为工作人员及时处理故障、设备转移提供了便利。
5、布线有序美观
笔者到过很多机房,其中不少机房的布线杂乱无章。通常情况下,机房的管理者图方便或者没有认识到布线的重要性,因此大多数不会花很多的精力在这上面。通常的状况是,几十根线纠缠在一起似一团乱麻,这样的布线,不仅不美观而且其弊端显而易见。网络维护不变工作效率低下,而且线之间的电磁干扰造成网络设备性能的下降和稳定性的降低,特别会带来巨大的安全隐患。
如何做好机房的网络布线呢?首先,在布线前要做好合理的规划和设计,做充分地调查研究,参观机房收集相关的布线资料,最好画出图纸然后进行布线。其次,购置合适的综合布线设备、相应的布线工具和辅助工具。条件允许的话,购置理线槽、镀锌管等以规整网线。另外,强烈建议布线不合理的机房一定要进行重新的规划与实施。还有这样的情况,机房在组建完成时布线是非常整齐与合理的,由于管理、维护不善使得其凌乱不堪,所有平时的好习惯是非常重要的。
总结:机房的管理与维护是非常复杂与辛苦的,当然也是非常重要的工作。从细节出发,不留死角、空白,其实也可以做到某种程度的一劳永逸。希望笔者的经验对大家有所帮助。
什么是交换机光纤端口?交换机光纤端口是在交换机中做什么的?交换机光纤端口和普通的端口有什么区别?看完本文您就会知道许多,希望大家多多学习参考。
级联既可使用普通端口也可使用特殊的MDI-II端口。当相互级联的两个端口分别为普通端口(即MDI-X)端口和MDI-II端口时,应当使用直通电缆。当相互级联的两个端口均为普通端口(即MDI-X)或均为MDI-II端口时,则应当使用交叉电缆。
无论是10Base-T以太网、100Base-TX快速以太网还是1000Base-T千兆以太网,级联交换机所使用的电缆长度均可达到100米,这个长度与交换机到计算机之间长度完全相同。因此。
级联除了能够扩充端口数量外,另外一个用途就是快速延伸网络直径。当有4台交换机级联时,网络跨度就可以达到500米。这样的距离对于位于同一座建筑物内的小型网络而言已经足够了!
所有交换机的光纤端口都是2个,分别是一发一收。当然,光纤跳线也必须是2根,否则端口之间将无法进行通讯。当交换机通过光纤端口级联时,必须将光纤跳线两端的收发对调,当一端接“收”时,另一端接“发”。
同理,当一端接“发”时,另一端接“收”(如图4所示)。令人欣慰的是,Cisco GBIC光纤模块都标记有收发标志,左侧向内的箭头表示“收”,右侧向外的箭头表示“发”。如果光纤跳线的两端均连接“收”或“发”,则该端口的LED指示灯不亮,表示该连接为失败。只有当光纤端口连接成功后,LED指示灯才转为绿色。
光纤跳线分为单模光纤和多模光纤。交换机光纤端口、跳线都必须与综合布线时使用的光纤类型相一致,也就是说,如果综合布线时使用的多模光纤,那么,交换机的光纤接口就必须执行1000Base-SX标准,也必须使用多模光纤跳线;如果综合布线时使用的单模光纤,那么,交换机的光纤接口就必须执行1000Base-LX/LH标准,也必须使用单模光纤跳线。
需要注意的是,多模光纤有两种类型,即62.5/125μm和50/125μm。虽然交换机的光纤端口完全相同,而且两者也都执行1000Base-SX标准,但光纤跳线的芯径必须与光缆的芯径完全相同,否则,将导致连通性故障。
另外,相互连接的光纤端口的类型必须完全相同,或者均为多模光纤端口,或者均为单模光纤端口。一端是多模光纤端口,而另一端是单模光纤端口,将无法连接在一起。级联是通过集线器的某个端口与其它集线器相连的。
如使用一个集线器UPLINK口到另一个的普通端口;而堆叠是通过集线器的背板连接起来的,它是一种建立在芯片级上的连接,如2个24口交换机堆叠起来的效果就像是一个48口的交换机,优点是不会产生瓶颈的问题。
堆叠(Stack)和级联(Uplink)是多台交换机或集线器连接在一起的两种方式。它们的主要目的是增加端口密度。但它们的实现方法是不同的。简单地说,级联可通过一根双绞线在任何网络设备厂家的交换机之间,集线器之间,或交换机与集线器之间完成。
而堆叠只有在自己厂家的设备之间,且此设备必须具有堆叠功能才可实现。级联只需单做一根双绞线(或其他媒介),堆叠需要专用的堆叠模块和堆叠线缆,而这些设备可能需要单独购买。交换机的级联在理论上是没有级联个数限制的(注意:集线器级联有个数限制,且10M和100M的要求不同),而堆叠各个厂家的设备会标明最大堆叠个数。
从上面可看出级联相对容易,但堆叠这种技术有级联不可达到的优势。首先,多台交换机堆叠在一起,从逻辑上来说,它们属于同一个设备。这样,如果你想对这几台交换机进行设置,只要连接到任何一台设备上,就可看到堆叠中的其他交换机。而级联的设备逻辑上是独立的,如果想要网管这些设备,必须依次连接到每个设备。
其次,多个设备级联会产生级联瓶颈。例如,两个百兆交换机通过一根双绞线级联,则它们的级联带宽是百兆。这样不同交换机之间的计算机要通讯,都只能通过这百兆带宽。
而两个交换机通过堆叠连接在一起,堆叠线缆将能提供高于1G的背板带宽,极大地减低了瓶颈。现在交换机有一种新的技术——Port Trunking,通过这种技术,可使用多根双绞线在两个交换机之间进行级联,这样可成倍地增加级联带宽。